Energy-Efficient Wake-Up Signalling for Machine-Type Devices Based on Traffic-Aware Long Short-Term Memory Prediction
نویسندگان
چکیده
Reducing energy consumption is a pressing issue in low-power machine-type communication (MTC) networks. In this regard, the Wake-up Signal (WuS) technology, which aims to minimize consumed by radio interface of devices (MTDs), stands as promising solution. However, state-of-the-art WuS mechanisms use static operational parameters, so they cannot efficiently adapt system dynamics. To overcome this, we design simple but efficient neural network predict MTC traffic patterns and configure accordingly. Our proposed forecasting (FWuS) leverages an accurate long-short term memory (LSTM)- based prediction that allows extending sleep time MTDs avoiding frequent page monitoring occasions idle state. Simulation results show effectiveness our approach. The errors are shown be below 4%, being false alarm miss-detection probabilities respectively 8.8% 1.3%. terms reduction, FWuS can outperform best benchmark mechanism up 32%. Finally, certify ability dynamically density changes, promoting scalability
منابع مشابه
Traffic Prediction Based on Random Connectivity in Deep Learning with Long Short-Term Memory
Traffic prediction plays an important role in evaluating the performance of telecommunication networks and attracts intense research interests. A significant number of algorithms and models have been put forward to analyse traffic data and make prediction. In the recent big data era, deep learning has been exploited to mine the profound information hidden in the data. In particular, Long Short-...
متن کاملthe effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus
از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...
15 صفحه اولA Long Short-Term Memory Recurrent Neural Network Framework for Network Traffic Matrix Prediction
Network Traffic Matrix (TM) prediction is defined as the problem of estimating future network traffic from the previous and achieved network traffic data. It is widely used in network planning, resource management and network security. Long Short-Term Memory (LSTM) is a specific recurrent neural network (RNN) architecture that is well-suited to learn from experience to classify, process and pre...
متن کاملLong Short-Term Memory-Networks for Machine Reading
In this paper we address the question of how to render sequence-level networks better at handling structured input. We propose a machine reading simulator which processes text incrementally from left to right and performs shallow reasoning with memory and attention. The reader extends the Long Short-Term Memory architecture with a memory network in place of a single memory cell. This enables ad...
متن کاملmachine learning for predictive management: short and long term prediction of phytoplankton biomass using genetic algorithm based recurrent neural networks
in the regulated nakdong river, algal proliferations are annually observed in some seasons, with cyanobacteria (microcystis aeruginosa) appearing in summer and diatom blooms (stephanodiscus hantzschii) in winter. this study aims to develop two ecological models forecasting future chlorophyll a at two time-steps (one-week and one-year forecasts), using recurrent neural networks tuned by genetic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Internet of Things Journal
سال: 2022
ISSN: ['2372-2541', '2327-4662']
DOI: https://doi.org/10.1109/jiot.2022.3181889